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BACKGROUND

The objective of this work was to survey a number of liquid fuels and hazardous
materials (explosives, propellants, and pyrotechnics) to determine if there is significant
absorption over a reasonably wide region of the microwave spectrum. The emphasis
was placed on obtaining a measure of the absorption coefficients as a function of
frequency and not on high accuracy or precision. The results for one liquid fuel are
presented here. The procedure was to determine the in-waveguide reflection and
transmission coefficients as a function of frequency from the measured incident,
reflecied, and transmitted powers after corraection for waveguide and other losses. The
compiex dielectric constant was obtained from these coefficients and the absorption
coefficient calculated.

Measurements were made over the frequency range 2.5 to 18 GHz by the use
of two sizes of double-ridge waveguide to cover the ranges 2.5 to 7.5 and 7.5 to 18
GHz. Step scanning at 0.1 and 0.25 GHz intervals was used for the low frequency
range and the high frequency range respectively, and the incident, reflected, and
transmitted powers were recorded at each frequency. A complete description of the
apparatus is given elsewhere (refs 1 and 2). The sample cell consisted of a verticle
waveguide section 30.45 cm (12 in.) in length bounded on the bottom by a thin
{(0.0076 cm) mylar support window for the liquid fuel, The top of the cell was
connected to the microwave source by means of a bidirectional coupler for
measurementg of the incident and reflected powers, P; and P,, while the bottom of the
cell was connectad to an identical coupler for measurement of the transmitted powsr,
P This coupler was terminated in its characteristic impedance. The thin mylar
support window was placed across the waveguide normal to the propagation direction
and sandwiched between the wavsguide section used for the sample holder and the
bidirectional coupler used to measure the transmitted intensity. Therefore, the mylar
support window interrupted the continuity of the waveguide. All powers were
corracted for waveguide and othet losses and calibration differences (refs 1 and 2).
By conservation of energy

Pi=P,+ P+ Py (1)

where Py, is the powsr absorbed at the sample and cell. By division of equation (1) by
P
1=R+T+A (2)

whoere R = P/P; and T = Py/P,; are the power raflection and transmission coefticients and




A=Pg/Pi=1-(R+T) (3)
is the normalized absorbed power.

Expressions for the power refelction and transmission coefficents, R and T, for
normal incidence on a plane parallel slab of dielectric in air in a waveguide were
derived using the techniques given by Ramo and Whitnnery (ref 3). These are

R = ry22[62d+e-20d-2C0s(23d)] / [@20ad+ry246-204-2r12,2C08(2¢12-2d)] (4)
and
T = t422t912 / [0200+r1p48-20d-2r122C05(2¢12-20d)] (5)

where d is the dielectric slab thickness in the direction of propagation and

P12 = 120)012 = (Zo-Z4) / (Z2+Z4) (6)
12 = Yz8jp12 = 222/ (Za+Zy) (7)
21 = 121812 = 274 / (Z2+Zy) (8)
Q= 2rl(joEok /2)1R2{1-(f/N2/e ) 121 +{(e"/e"21 -({/1)2/e" )21 12 (9)

and
B = 2w = 2ri{locoe’ /)1 21 (/02N 21+ {(e"fe" )21 - (/) )2e N2+ 1112 (10)

£’ and e” are tha real and imaginary parts of the complex dielectric constant; yo and €
are the permeability and permittivity of vacuum (air); f. is the waveguide cutoff
frequency in air; and A is the wavelength in the waveguide in the dielectric (ret 3;.
Equations 4 and 5 are valid when the .« -guice section after the sample
(bidirectional coupler) is terminated in its characteristic impedance su that there is no
reflected wave in this section. Zy amd Z; are the in-waveguide impedances of vacuum
(air) and the dislectric, respectively, and are given by

Zy = (Hofeo [1- (f/)2])12 (11)

Zp = (ofeo€T1-e"le] [1-(tM)2/ET) 12 (12)




p12 and 112 are the field reflection and transmission coefficients for normal incidence
on the dielectric slab when conditions are such that there is no reflected wave in the

dielectric. t21 is the similar transmission coefficient for a wave in the dislectric incident

on air. o and B are the real and imaginary parts of the complex field propagation
constant in the dielectric defined by

E = Egea-ip)z A (13)

where z is the distance in the direction of nropagation. o« is therefore the field

attenuation or absorption coefficient, and B is 2x times the reciprocal wave length (eq
10), both in the dielectric slab. Born and Wolf give relationships similar to equations 4
and 5 for out-of-waveguide conditions (ref 4).

Significant simplifications of the above equations are possible for low-loss
materials, i.e., when e/’ « 1. This is the case for the liquid fuel under considerations
and the appropriate approximations were made in the calculations of R and T.

RESULTS AND DISCUSSION

Measurements have been made on two liquid fuels, liquid water, eight
hazardous materials, and two polymeric materials, but because of space limitations,
only the resuits for one liquid fuel (Diesel 2) are presented here. The results for liquid
water and the other materials will be published elsewhere (ref 1).

Measuraments were made of Py, P,, and P, for the empty cell and the reflection
and transmission coefficients calculated. Typical reflaction coefficient results are given
in figure 1a for the low frequency range. Similar results were obtained for the high
frequency range. The peaks in the reflection coeflicient spsctra are due to the
discontinuity in the waveguide causad by the thin mylar support window. This was
verified by measurements for the empty waveguide, i.e., without the mylar and by
measurements for plastic samples which were machined to fit snugly into the
waveguide and so used without the mylar. Calculations were also made of the
reflaction coefficients for the mylar alone. These calculations indicate that the
refisction cosfticient for the thickness of mylar used is negligible over the whole
frequency range used for these studies. Peaks of this type were aiso found in the
reflection and transmission spectra for liquid samples in the celi (fig. 1b). No attempt is
made here to correct the results for these peaks dus to the discontinuity in the
waveguide. Howevar, in fitting the calculated reflection and transmission coefficients
to the experimental coeflicients allowance was made for the effects of the discontinuity.
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The experimentally determined reflection coefficient for the fuel Diesel 2 is
given as a function of frequency in figure 1b for the low frequency range. Somewhat
similar results were obtained for the high frequency range (not shown). The maxima
and minima are due to interference effects and the change in wavelength with
frequency. The effect of the mylar window and so the discontinuity in the waveguide
on the reflection coefficient of the sample can be clearly seen by a comparison of
figures 1a and 1b. Large peaks in the reflection coefficient of the sample in the cell
occur at approximately the same frequencies as the peaks in the reflection coefficient
of the empty cell.

Also shown in figure 1b is the calculated reflection coefficient with " and /¢’
chosen as a function of frequency so that the differences between the calculated and
experimental reflection and transmission coefficients are minimized. The mylar
window and the discontinuity are not considered in the calculations. However,
calculations which were made for the sample and the mylar but without the
discontinuity indicate that the mylar alone has neglibible effact on the total reflection
coefficient. Measurements were made every 0.1 GHz, and the calculated reflection
coefficient of figure 1b is also given for comparison purposes only at every 0.1 GHz at
the same frequencies as those used in the rneasurements.

An examination of figure 1b indicates excellent agreement between the
frequencies of the maxima and minima of the experimental and calculated reflection
coefficients. In addition, the amplitudes of the experimental and theoretica! coefficients
are in rather good agreement except at frequencies cerresponding to the frequencies
of the peaks of the empty cell as given in figure 1a. The initial value of ¢’ was
estimated from the separation of the maxima and minima and was then adjusted as a
function of frequency to obtain the best match between the positions of the maxima
and minima of the experimental and theorstical reflection coefficients (ref 1)

The transmission coelficient data and calculations are not presented. €"/¢’ was
determined by using the normalized absorbed power, A, of equation 3. The calculated
values ot A were adjusted to the experimental values for the sample at selected

frequencies by the choice of £"/c at each frequency. A polynomial was then fitted to the
values of e"/e’ versus frequency and used to calculate A as a function of frequency.

The final values of €’ and /¢’ at each frequency were selected to minimize the
differences between the experimental and thaorstical values of R and A.

e’ was found to decrease with increasing frequency between 2.5 and
approximately 8.5 GHz and then to remain constant between 8.5 and 18 GHz within

exparimental error. £"4’ was found to decrease with increasing frequency over mest of




the frequency range but to plateau at about 15 GHz with indications of an increase
with further increases in frequency. These results indicate that there is a relaxation
process giving a maximum of absorption at a frequency below the frequency range of
measurement and further that there is another relaxation process with an absorption
maximum above the frequency range of measurement. The dielectric constant results
will be discussed in detail elsewhere (ref 1).

The out-of-waveguide absorption coefficient for Diesel 2 was calculated using

equation 9 with f; = 0 and the experimentally determined values of " and €”4&" and is
given in figure 2. This coefficient increases with frequency throughout the range of
measurement and is small.

SUMMARY

Measurements were made of the in-waveguide incident, reflected and
transmitted powers of liquid fuel between 2.5 and 18 GHz, corrections were made for
waveguide and other system losses, and reflection and transmission coefficients
calculated. The reflection and transmission coefficients indicate strong interference
eifscts. Expressions were obtained for the in-waveguide theoretical refiection and
transmission coefficients in terms of the complex dielectric constant, the waveguide
cutoff fraquency, and the sample thicknass. The real pan of the dielectric constant was
then chosen as a function of frequency so that the maxima and minima of the
calculated reflection spectrum matched those of the expenmental spectrum and further
minimized the differences between the two reflection spectra. The loss tangent was
chosen as a function of frequency so as to match the calculated normalized power toss
to the axperimantal values. The out-of-waveguide absorption coefficient was then
obtained as a function of frequency from these results. The absorption coaeificient is
small and increases with fraquency.
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Figure 1. (a) Measured refiection coeflicient of the empty sample cell.
(b) Measured reflection coefficlent of the sample (Diesel 2

fuel) and cell and the calculated reflection coefficient
of the sample.
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Figure 2. Absorption coetficient versus frequency for Diese! 2 fuel
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